The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions

نویسندگان

  • Yvonne L Dorland
  • Tsveta S Malinova
  • Anne-Marieke D van Stalborch
  • Adam G Grieve
  • Daphne van Geemen
  • Nicolette S Jansen
  • Bart-Jan de Kreuk
  • Kalim Nawaz
  • Jeroen Kole
  • Dirk Geerts
  • René J P Musters
  • Johan de Rooij
  • Peter L Hordijk
  • Stephan Huveneers
چکیده

Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell-cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of a common mechanism of disassembly of adherens junctions through Gα13 targeting of VE-cadherin

The heterotrimeric G protein Gα13 transduces signals from G protein-coupled receptors (GPCRs) to induce cell spreading, differentiation, migration, and cell polarity. Here, we describe a novel GPCR-independent function of Gα13 in regulating the stability of endothelial cell adherens junctions (AJs). We observed that the oxidant H2O2, which is released in response to multiple proinflammatory med...

متن کامل

Integrative Physiology PKC Activation of p120-Catenin Serine 879 Phospho-Switch Disassembles VE-Cadherin Junctions and Disrupts Vascular Integrity

Rationale: Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mec...

متن کامل

Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells.

Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by t...

متن کامل

Structure of artificial and natural VE-cadherin-based adherens junctions.

In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and ass...

متن کامل

PKCα activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity.

RATIONALE Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016